

Tutorial # 1 INVERSIONE RAPIDA DI PROFILI ERT 2D

www.geostudiastier.com

v.**1.0**

CASO 1

PROFILO ERT 2D PIATTO

e

PROFILO ERT 2D CON TOPOGRAFIA DEGLI ELETTRODI INTEGRATA NEL FILE .BIN

ERTLab Studio

ERTLab Studio - Tutorial Line 2D PROCEDURA RAPIDA DI INVERSIONE

PROCEDURA RAPIDA DI INVERSIONE

PASSO 1: CARICAMENTO DEL FILE .BIN

- 1. Lanciare ERTLab Studio;
- 2. Premere su "Home" (nel menu in alto a sinistra) col tasto sinistro del mouse;
- 3. Cliccare su Action tool e successivamente sul tasto LOAD BIN dalla finestra che si apre; caricare il file desiderato:

Scena Opzioni Vsibile Nototraslazione Rotazione (mi) 0 0 Scala 1 1 Muovo progetto 4D	Base Camera Camera Strumenti di C Assi Ogge Ac	rientamento	2		+X -X +Y Y +Z -Z Prospettiva Centra Automaticamente Cattura Schermo intero Visualizza impostazioni Pick
Visibile Rototraslazione X Y Posizione (m) 0 0 0 Rotazione (gradi) 0 Scala 1 1 1 Nuovo progetto 4D	Scena Opzioni		\ 		Apri .BIN file (IRIS Syscal format)
X Y Z Posizione [m] 0 0 Rotazione [gradi] 0 0 Scala 1 1 Modifica 0	✓ Visibile				Apri Apri MultiSource
Modifica YZ ZX XY Mostra licenza	Rototraslazione Posizione [m] Rotazione [gradi] Scala Modifica	X 0 0 1 YZ	Y 0 0 1 ZX	Z 0 1 XY	File Recenti Nuovo Progetto III Operazioni tra Files

- 4. Apparirà un messaggio riepilogativo:
- 5. Premere il tasto OK:

- 6. Premere il tasto "–Y" nella barra in alto per visualizzare la sezione lateralmente:
- 7. La pseudo-sezione viene visualizzata:

PASSO 2: GENERAZIONE DELLA MESH

8. Cliccare col tasto destro del mouse su *Mesh and Model* e successivamente su *Run Inversion* nel menu contestuale che si apre:

9. Rispondere "Sì" alle seguenti domande per applicare i filtraggi automatici e prendere nota delle informazioni fornite dai messaggi:

La sezione filtrata avrà il seguente aspetto (funzioni di filtraggio manuale sono comunque disponibili):

PASSO 3: LANCIO DELL'INVERSIONE

10. Appare la seguente finestra:

🙀 Esegui Inversione	_		×
Inversion			
Errore sui Dati			
Errore percentuale sui dati [%] Rho 1	IP	5	
Termine costante di errore sui dati [V/I]-[mV/V] Rho 0.0001	IP	1e-005	
Iterazioni			
Tipo di inversione Personalizzata 🗸 Rough Trials Iter 🛛 4 1			
Massimo numero Iterazioni nell'Inversione Rho 15	IP	15	
Rough Trials Iter 411111111111111			
Modellazione IP			
Numero Processori 1 1 2			
🗙 Annulla 🔅 Trova Valori Ottimali 😨 Esegui Inversione	÷ 1	Mostra ava	nzate

- 11. Premere il tasto Trova valori ottimali e successivamente premere Esegui inversione per iniziare il processo di inversione (Dovrà prima essere selezionata la cartella di salvataggio dati).
- 12. Seguire l'elaborazione fino alla fine (Process completed) e chiudere la finestra di inversione:

VISUALIZZAZIONE DEL MODELLO INVERTITO

13. Visualizzare il modello invertito spuntando il nodo *Modello di resistività* sul menu ad albero principale a sinistra, deselezionare il nodo *Mesh* e *Misure*, poi espandere il modello di resistività cliccando su "+" accanto al nodo *Modello di resistività*:

🛸 ViewLab3D						
Strumenti di Orientamento	^ +X -X +Y -	Y +Z -Z 🗹 Prospettiva	Centra Automaticamente	Cattura	Schermo intero	Visualizza impostazioni Picker
Assi						
Oggetti Grafici						
- Griglia						
Oggetti Grafici		9, 0 0 0 0 0 0 0 0		• • • • • •		
Elettrodi						
🛱 🗔 Misure						
Mappa Colori		\mathbf{X}				
🗉 🗹 Topografia						
le Internet Mesh e Modello						
Mesh						
🗄 🗹 Modello di Resistività						
👜 🔲 Modello di Conducibilità						
🖬 🔲 Modello di Polarizzazione						
Hodello di Sensitività	~					
Visibile Nome Modello di Resistività						
L						

14. Deselezionare le sezioni XY e YZ, selezionare *Mappa colori*, impostare un'adeguato intervallo di resistività (valori limite *min* e *max*) e scegliere una scala colori (consigliata: *ERTLab Viewer*) con o senza scala logaritmica:

VISUALIZZAZIONE DEL MODELLO INVERTITO

15. Selezionare il nodo "Assi" nel menu ad albero e premere il tasto Aggiornamento continuo in modo da adattare gli assi alla sezione; deselezionare l'opzione Prospettiva nella barra in alto:

16. Salvare la sezione visualizzata premento il tasto *Cattura* nella barra in alto:

CASO 2

PROFILO ERT CON TOPOGRAFIA DEGLI ELETTRODI

ERTLab Studio

ERTLab Studio - Tutorial Line 2D PROCEDURA RAPIDA DI INVERSIONE

PROCEDURA RAPIDA DI INVERSIONE

PASSO 1: CARICAMENTO DEL FILE .BIN

- 1. Lanciare ERTLab Studio;
- 2. Premere su "Home" (nel menu in alto a sinistra) col tasto sinistro del mouse;
- 3. Cliccare su Action tool e successivamente sul tasto LOAD BIN dalla finestra che si apre; caricare il file desiderato:

Scena Opzioni Vsibile Nototraslazione Rotazione (mi) 0 0 Scala 1 1 Muovo progetto 4D	Base Camera Camera Strumenti di C Assi Ogge Ac	rientamento	2		+X -X +Y Y +Z -Z Prospettiva Centra Automaticamente Cattura Schermo intero Visualizza impostazioni Pick
Visibile Rototraslazione X Y Posizione (m) 0 0 0 Rotazione (gradi) 0 Scala 1 1 1 Nuovo progetto 4D	Scena Opzioni		\ 		Apri .BIN file (IRIS Syscal format)
X Y Z Posizione [m] 0 0 Rotazione [gradi] 0 0 Scala 1 1 Modifica 0	✓ Visibile				Apri Apri MultiSource
Modifica YZ ZX XY Mostra licenza	Rototraslazione Posizione [m] Rotazione [gradi] Scala Modifica	X 0 0 1 YZ	Y 0 0 1 ZX	Z 0 1 XY	File Recenti Nuovo Progetto III Operazioni tra Files

- 4. Apparirà un messaggio riepilogativo:
- 5. Premere il tasto OK:

- 6. Premere il tasto "–Y" nella barra in alto per visualizzare la sezione lateralmente:
- 7. La pseudo-sezione viene visualizzata:

PASSO 2: INSERIMENTO TOPOGRAFIA ELETTRODI (1° metodo)

8. Accedere alla tavola di gestione degli elettrodi seguendo la prodedura seguente:

PASSO 2: INSERIMENTO TOPOGRAFIA ELETTRODI (1° metodo)

9. Modificare ciascun valore Z (quota in m) manualmente, selezionando le relative caselle e verificare l'avvenuta modifica sulla sezione :

10. E' possible usare anche la funzione di interpolazione automatica selezionando prima l'intervallo da modificare e successivamente aprendo la finestra "Set to..." premendo il tasto destro del mouse.

11. Specificare i valori di quota iniziale e finale per ottenere una interpolazione automatica nell'intervallo selezionato:

Assegna a	×					
Valore Iniziale	12					
Valore Finale	15					
🗌 Interpola Z rispe	etto lunghezza					
Copia SOLO valori Z e Z Superficie						
Ok	Annulla					

PASSO 2: INSERIMENTO TOPOGRAFIA ELETTRODI (2° metodo)

IN ALTERNATIVA AL 1° METODO, è possible inserire le coordinate reali degli elettrodi importando un apposito *file* di testo composto da n° 3 colonne relative alle coordinate x, y, z (generabile con Excel o Wordpad):

La procedura è la seguente:

PASSO 2: INSERIMENTO TOPOGRAFIA ELETTRODI (3° metodo)

<u>IN ALTERNATIVA</u>, è possible inserire le coordinate reali degli elettrodi tramite un'apposita "TAVOLA DI CONVERSIONE" (metodo generalmente raccomandato per acquisizioni 3D):

Si tratta di un semplice file di testo .txt (generabile con Excel o Wordpad) composto da sette colonne:

NUMERO ELETTRODO	COO	RDINATE I SEQUENZ	DELLA A	CC (as	ORDINATE REALI ssolute o relative)	
1		\checkmark				
1	0	0	0	245.630	47263.770	86.000
2	2	0	0	245.950	47262.830	85.790
3	4	0	0	246.010	47261.910	85.610
4	6	0	0	246.010	47261.000	85.560
5	8	0	0	246.080	47259.940	85.590
6	10	0	0	246.280	47258.900	85.770
7	12	0	0	246.460	47257.990	85.690
8	14	0	0	246.540	47257.280	85.150
9	16	0	0	246.620	47256.090	84.410
10	18	0	0	246.900	47255.240	84.280
11	20	0	0	246.950	47254.310	84.050
12	22	0	0	247.120	47253.540	84.060
13	24		0	247.200	47252.370	83.790

ERTLab *Studio* legge <u>automaticamente</u> la tavola di conversione al memento dell'apertura del file .bin a condizione che i due files abbiano LO STESSO IDENTICO NOME:

Esempio

Nome del file File .BIN	>	Linea1 .BIN
Nome file Tavola di Conversione	>	Linea1.TXT

In caso di acquisizione con POLO REMOTO è possible:

 Inserire le coordinate del polo remoto alla fine della tavola di conversion con lo speciale "identificativo" -1 nella prima colonna; in questo caso, ERTLab Studio lo identifica automaticamente come polo remoto:

70	138	0	0	66.090	47201.970	87.550
71	140	0	0	66.510	47201.200	87.870
72	142	0	0	66.740	47200.190	88.260
-1)	9315	7181	178	15.660	47181.190	78.420

Coordinate qualsiasi

PASSO 3: GENERAZIONE DELLA MESH

12. Cliccare col tasto destro del mouse su "Mesh and Model" e successivamente su "Run Inversion" nel menu contestuale che si apre:

13. Rispondere "Sì" alle seguenti domande per applicare i filtraggi automatici e prendere nota delle informazioni fornite dai messaggi:

I dati sono stati filtrati *(funzioni di filtraggio manuale sono comunque disponibili)* e la *mesh* creata:

PASSO 4: LANCIO DELL'INVERSIONE

14. Appare la seguente finestra:

👪 Esegui Inversione	_		×
Inversion			
Errore sui Dati			
Errore percentuale sui dati [%] Rho 1	IP	5	
Termine costante di errore sui dati [V/I]-[mV/V] Rho 0.0001	IP	1e-005	
Iterazioni			
Tipo di inversione Personalizzata 🗸 Rough Trials Iter 🛛 4 1			
Massimo numero Iterazioni nell'Inversione Rho 15	IP	15	
Rough Trials Iter 411111111111111			
Modellazione IP			
Numero Processori 1 1 2			
🗙 Annulla 🔅 Trova Valori Ottimali 😨 Esegui Inversione	iğf N	Mostra avai	nzate

- 15. Premere il tasto Trova valori ottimali e successivamente premere Esegui inversione per iniziare il processo di inversione (Dovrà prima essere selezionata la cartella di salvataggio dati).
- 16. Seguire l'elaborazione fino alla fine (Process completed) e chiudere la finestra di inversione:

PASSO 5 – VISUALIZZAZIONE DEL MODELLO INVERTITO

17. Visualizzare il modello invertito spuntando il nodo *Modello di resistività* sul menu ad albero principale a sinistra, deselezionare il nodo *Mesh* e *Misure*, poi espandere il modello di resistività cliccando su "+" accanto al nodo *Modello di resistività*:

18. Deselezionare le sezioni XY e YZ, selezionare *Mappa colori*, impostare un'adeguato intervallo di resistività (valori limite *min* e *max*) e scegliere una scala colori (consigliata: *ERTLab Viewer*) con o senza scala logaritmica:

PASSO 5 – VISUALIZZAZIONE DEL MODELLO INVERTITO

19. Selezionare il nodo "Assi" nel menu ad albero e spuntare l'opzione "Auto Fit Live" in modo da adattare gli assi alla sezione; deselezionare l'opzione "Perspective" nella barra in alto:

20. Salvare la sezione visualizzata premento il tasto "Capture" nella barra in alto.

